大学物理 ›› 2023, Vol. 42 ›› Issue (8): 1-.doi: 10.16854/j.cnki.1000-0712.220596

• 教学研究 •    下一篇

关于格林函数法的注记

杨师杰   

  1. 北京师范大学物理学系,北京100875
  • 收稿日期:2022-12-06 修回日期:2022-12-30 出版日期:2023-08-28 发布日期:2023-08-31
  • 作者简介:杨师杰(1966—),男,湖南资兴人,北京师范大学物理学系教授,博士,主要从事凝聚态物理理论研究工作. E-mail:yangshijie@tsinghua.org.cn

Notes on the Green,s function method

YANG Shi-jie   

  1. Department of Physics, Beijing Normal University, Beijing 100875, China 
  • Received:2022-12-06 Revised:2022-12-30 Online:2023-08-28 Published:2023-08-31

摘要: 本文系统地表述了格林函数法的基本思想,证明格林函数倒易关系只适用于自伴算符,格林函数的齐次边界条件也来自于微分算符的自伴性,非自伴算符的微分方程不能直接应用格林积分公式.文章还描述了由格林函数带来的微扰展开法,展示了其与物理学中广泛应用的费曼图技术的关系,以便学生在学习高等物理时理解其内在逻辑.

关键词: 格林函数, 自伴算符, 边界条件, 微扰展开

Abstract: The paper systemically describes the fundamental principle of the Green,s function method. It demonstrates that the reversal relation holds only for the case of self-adjoint operator. The homogeneous boundary condition of the Green,s function also comes from the self-adjointness of the differential operator while the Green integral formula does not directly apply to the non-self-adjoint operator. The paper also addresses perturbation expansion method induced by the Green,s function, shows its relation to the popular Feynman diagram technique in physical science so as to help the student understanding the internal logics when learning advanced physics.

Key words:  Green,s function, self-adjoint operator, boundary condition, perturbation expansion